
Using Design of Experiments, Sensitivity Analysis, and Hybrid
Simulation to Evaluate Changes to a Software Development Process:

A Case Study

Wayne Wakeland
Systems Science Ph.D.

Program, Portland State
University

wakeland@pdx.edu

Robert H. Martin
Software Management

Consulting
bobm4@teleport.com

David Raffo
School of Business

Administration, Portland
State University

davidr@sba.pdx.edu

Abstract

Hybrid simulation models combine the high-level
project issues of System Dynamics models along with
the detailed process representation of discrete event
simulation models. Hybrid models not only capture
the best of both of these simulation paradigms, but
they also are able to address new issues that are
important in managing complex real-world
development projects that neither the System
Dynamics nor Discrete Event simulation paradigms
are able to address alone.

In order to reap the full benefits from a simulation
model, a structured approach for analyzing model
results is necessary. The recommended approach is
a combination of the Design of Experiments (DOE)
technique and sensitivity analysis performed in a
specific manner. DOE is a statistical technique that
provides a more objective measure of how the impact
of a given change to the model (such as a process
change) might be dependent upon the values of other
model parameters (such as the project environment,
worker motivation, schedule pressure and so forth).
Consideration of the interaction effects coupled with
sensitivity analysis is essential for insightful
interpretation of model results and effective decision-
making.

This paper applies DOE and broad range sensitivity
analysis to a Hybrid System Dynamics and discrete
event simulation model of a software development
process. DOE is used to analyze the interaction
effects, such as the degree to which the impact of the
process change depends on worker motivation,
schedule pressure and other project environmental
variables. The sensitivity of the model to parameter
changes over a broad range of plausible values is
used to analyze the nonlinear aspects of the model.
The end result is a deeper insight into the conditions
under which the process change will succeed and

improved recommendations for process change design
and implementation.

Keywords: Software Process Modeling, Software
Process Simulation, Hybrid Simulation, Design of
Experiments, Sensitivity Analysis

1. INTRODUCTION

It is well understood that managing a software
development project is a multi-faceted problem that
seems to transcend the complexity of normal project
management. Initially a manager must supply cost,
schedule and quality estimates using incomplete
information about requirements and resources. The
manager must decide the scope of the work, the project
methodology, the schedule and the staff. She must
anticipate the impact of environmental factors such as
staff experience, requirements stability, corporate
culture and development environments.

To further complicate the problem, most of these
factors are dynamic and will change throughout the
project. Many of the factors interact with each other.
Experienced managers may develop an intuition within
the domain of their experience, but changes in
technology, such as the move to web-based
applications, can challenge the validity of that intuition.

These complications increase the potential value of
using computer models. Models of the development
process and of the development environment represent
a concrete expression of a manager’s understanding of
the project. Models also provide a more complete and
more precise description of the various assumptions
that previously may have been only partially
understood in an intuitive sense. Simulation of project
behavior over time allows the manager to examine the
effect of policy alternatives given different assumptions
about the parameter values.

 1

In this paper, we present a hybrid simulation model
of a software development project. Hybrid models
integrate the high-level project issues of System
Dynamics models along with the detailed process
representation of Discrete Event simulation models
into one model. As a result, Hybrid models are able
to capture a number of important aspects of the
software development environment and address how
these factors impact the overall performance of the
process and development effort.

We examine the Hybrid model using the well-known
Design of Experiments (DOE) methodology in
conjunction with sensitivity analysis conducted over
a broad range of values for the selected input
parameters. DOE is a statistical method that can be
used to examine complex simulation model behavior
in order to see how changes in parameter values lead
to different effects depending upon how system
components interact with each other. Sensitivity
analysis complements DOE by helping to reveal non-
linear effects. As a result, one can see how a given
process change may be beneficial to a project under
certain project environmental conditions, while it
would not be beneficial under others.

Although showing the impact of parameter changes is
the goal of sensitivity analysis in general, broad range
sensitivity analysis (BRSA) reveals possible non-
linearities that may not be detected using traditional
sensitivity analysis in which parameters are varied
systematically by a small fixed percentage.

Hybrid simulation models tend to be particularly
complicated and non-linear, which increases the
potential value of using DOE and BRSA to help
uncover the implications of the complex behavior
generated by such models.

This paper opens by describing general simulation
paradigms, and a particular hybrid simulation model
for a software development process. Next, we
describe DOE and BRSA, and discuss their
application to the analysis of hybrid simulation
models. Finally, we provide a case study that
illustrates the application of DOE and BRSA to a
hybrid model of a software development process.

2. BACKGROUND AND LITERATURE
REVIEW

In this section, we review three simulation paradigms
that have been applied to software development
processes and identify some of the types of questions
that can be difficult to answer using these paradigms.

Next, we describe Hybrid models with a focus on the
special features and characteristics that enable it to
address questions beyond the other paradigms. Finally,
we provide an overview of DOE and BRSA, and
describe how this combination can be used to help
address important issues in software development
simulation.

2.1 Common Simulation Paradigms Used to
Aid Software Process Management

System Dynamics
System dynamics models capture the dynamic behavior
of project factors and their interactions. Since the
interactions may dominate the project behavior, these
models provide a way to examine the sensitivity of the
project to critical values in the factors. Abdel-Hamid
and Madnick provided a sophisticated example of a
model of the software development process. [1]

A key aspect of system dynamics (SD) models is the set
of state variables that change dynamically over time.
While this framework can be used to represent process
activities (for example, the variable “Design” might
represent the amount of code that has been designed at
a given time), the paradigm does not directly or easily
represent entities such as code modules. Thus, there is
no opportunity to attach attributes such as complexity to
the entity. A great deal of work has been done using
System Dynamics models in the software process
simulation community. Lehman and Ramil [14],
Powell et al. [20], Wernick and Lehman [24], Madachy
[15], Tvedt [23], among others have developed
complex models to predict project performance issues
ranging from software evolution to concurrent project
performance to inspection effectiveness. While SD
models have been built to examine questions regarding
process activities [16] [23], these models are inherently
limited by the underlying mathematical engine (first-
order ordinary difference equations in time).

State Based Models
State based models directly represent process activities
and model the process dynamics through state
transitions triggered by events. The design completion
may trigger both the start of the coding activity and the
start of unit test plan development. A state based model
easily represents parallel activities, which makes it
attractive for examining questions about process
bottlenecks. Equations of these models are often
similar to those found in discrete event simulation
models in SW Process Applications. Raffo used a
state-based simulation to predict model time, cost and
quality in a detailed applied model [21][22]. As the
name implies, these models are based on state charts.

 2

Since the model time advances only when events
occur, updates to model dynamic project factors must
be tied to the occurrence of events. This limits the
ability of the state-based models to effectively
represent feedback loops.

Discrete Event Simulation
Discrete models represent the development process
as a series of entities flowing through a sequence of
activities. Discrete models easily represent queues
and can delay processing at an activity if resources
are not available. Each entity may be described by
unique “attributes”. Changes to the attributes by the
activities can provide much of the value of a discrete
model. The effort or duration of each activity may be
sampled from random distributions allowing the
model to represent the uncertainty that exists in the
process. This allows the simulation to capture the
effects of variation in the entities (such as size,
complexity, number of defects, defect type and so
forth) on each activity. Discrete models can capture
the interdependence that occurs between activities in
a project. Activities in a development process may
be delayed when a programmer is diverted to another
task. Testing may be delayed until a test bed is
released. If a model can capture these dependencies
at a sufficiently detailed level, it may show ways to
alter the process to reduce risk or increase efficiency.

Since discrete models advance time only when an
event occurs, continuously changing variables can
only be updated at specific event times. While the
time between discrete events may be days or weeks
in a software project, SD models containing
continuous variables may require a time step in
hours. This difference can cause errors in the
integration of the continuous variables or may create
instability in the behavior of feedback loops if a DES
model is used for this purpose. A number of DES
models have been developed in the software process
domain. These include Raffo et al [22], Host et al [9]
and Donzelli and Iazeolla [5].

2.2 Hybrid Models

Hybrid models [17][18] employ a more complex
simulation technique than either System Dynamics
models or Discrete Event models in order to avoid
the limitations described with the other modeling
paradigms. By combining discrete event and
continuous simulation, hybrid models can represent
entities with attributes being acted upon by activities
that are influenced by continuously changing factors.
The state changes that are directly represented in

state-based models are implied through the action of
entities in activities. Parallel activities are represented
by additional virtual entities. Consequently, hybrid
models enable one to examine the effects of changes in
processing logic, within the context of a dynamic
project environment.

Since Hybrid models treat work packages and project
resources as discrete entities, as is typically done in
discrete event simulation (DES) models, Hybrid models
are able to accurately reflect the actual status of an
item: designed, awaiting rework, awaiting inspection,
and so forth. This allows the modeler to easily examine
alternative policies for assigning resources to different
classes of work: coding, testing, rework, and others
depending on the amount of backlog present, for
example.

In Hybrid models, parameters such as error rates and
resource productivity vary dynamically over time,
depending on schedule pressure and other factors, just
as they do in System Dynamics (SD) models. Thus, it
is possible to examine questions about staffing and
overtime policies, and to explore different assumptions
about worker fatigue and burnout.

Obviously, not all real-world questions fall neatly into
categories such that one would naturally use either a
DES model or a SD model. Many real-world questions
would be better answered using a Hybrid model that
combines both paradigms. Policies for assigning
resources to different classes of work for example are
likely to depend upon staffing and overtime policies. It
is often worker fatigue and burnout that cause backlogs
of work packages to develop. Without a Hybrid model,
the analyst must attempt to approximate the relevant
effects solely within the DES or SD paradigm.

While a Hybrid model can provide the most direct and
complete representation of a software development
project, Hybrid models also require a more
sophisticated simulation engine. We developed the
needed capability by modifying a commercial
simulation package, Extend [6]. Although the
standard Extend software does permit the user to create
hybrid models, it is not computationally efficient when
used this way. Modifications to the EXTEND
simulation engine were needed to accurately and
rapidly simulate combined continuous and discrete
models. The resultant run times were on the order of a
minute to simulate a single replication of a two-year
project with a time step of one day. This level of
performance is necessary for practical use of DOE and
BRSA.

 3

2.3 Hybrid Model Utilized for the Case
Study

• The duration of an activity depends on both the

characteristics of the module being processed
(size, complexity, etc), and overall system
characteristics such as resource allocation,
productivity and error rates. We modeled these
characteristics by implementing the System
Dynamics model of Abdel-Hamid and Madnick [1]
in Extend, and used it to generate dynamic error
rates, productivity rates and resource levels. The
dynamic nature of these characteristics means that
the time required to process a module of a given
size can change during the project. For more detail
on the Hybrid model design and implementation
see [17] or [18].

In this paper, we present a Hybrid model that
combines the well-known System Dynamics model
developed by Abdel-Hamid and Madnick [1] with a
discrete model of a software process fragment that
contains the phases of design, code and unit test.

The Abdel-Hamid and Madnick (AHM) model [1]
contains eight main sectors as follows: Human
Resources, Manpower Allocation, Job Size
Adjustment, Productivity, Control, Planning, Quality
Assurance and System Test. The AHM model
contains parameters pertaining to staffing levels,
worker motivation, changes in the workforce due to
hiring, training, transfers, and attrition, dynamic
variables based on experience, exhaustion,
motivation, and communication losses and so forth.
These parameters combine with others to form
extensive feedback loops that effect overall worker
productivity and the efficiency in a complex, non-
linear manner. These effects impact the overall
execution of the software process (captured by the
discrete event portion of the model).

• The original ISPW-6 example process does not

contain a code inspection. We based our discrete
event process model on Raffo’s ISPW-6 state-
based model [21] which did include code
inspections. Furthermore we included a re-
inspection step. The process change that we
present in this paper deals with whether or not to
eliminate these re-inspections from the process.

As mentioned previously, the increased complexity of
hybrid models, opens up a whole new (and necessary)
spectrum of questions that can potentially be addressed.
We believe that DOE coupled with BRSA makes it
possible to fully capitalize on this potential.

The ISPW-6 process fragment which is contained in
the Discrete portion of the Hybrid model was initially
documented by Kellner [12] as part of the 6th
International Software Process Workshop. This
process fragment was developed to test software
process modeling paradigms for their ability to
capture real-world software process issues and has
been used as a benchmark by numerous researchers
in the field.

Although there are notable exceptions (c.f. Hood and
Welch [8] and Porcaro [19]), simulation studies often
rely on ad hoc exploration of the input parameter space,
a process that cannot be relied upon to reveal the subtle
interactions that often exist among various components
of a complex non-linear model. We advocate DOE and
BSRA to help reveal the interactions and nonlinear
effects at work in the model, leading to a better
understanding of the model logic and model behavior,
and hence to a better understanding of the underlying
system/process; ultimately resulting in better policy
recommendations.

Some of the changes we made to the ISPW-6 Process
to make the discrete portion of the Hybrid model
more realistic:

• The original ISPW-6 example process specifies

the activities required to implement one change
to one module. Our model extended the process
to allow code creation and testing on a series of
modules. This enabled the model to simulate the
effects of queuing, and allows us to examine
system bottlenecks. In addition, each activity is
capable of operating on several modules
simultaneously. This simulates the effect of (1)
concurrent tasks within an activity (e.g. the effect
of several modules being coded simultaneously),
and (2) concurrent activities across development
phases (e.g. several modules may be in coding
some while others are in design and still others
may be in test).

3. DESIGN OF EXPERIMENTS (DOE)
AND BROAD RANGE SENSITIVITY
ANALYSIS (BRSA)

3.1 Design of Experiments (DOE)

DOE or experimental design is a statistical technique
for organizing and analyzing experiments. An excellent
overview is provided in Law and Kelton [13]. When
applied to computer models, each experiment can

 4

require that multiple replications of the simulation
model be run. The factors are the parameters that are
varied (independent variables that are under the
experimenter’s control), while the responses are the
dependent variables or outcome measures of interest.
Factors might be the model parameters that would be
modified to represent different policies for testing
and rework under consideration for a SW project, and
the responses might be project cost, duration, and
escaped errors.

DOE has been applied to simulation in a variety of
different ways. For example, in a recent article,
Houston et al [10] used DOE to measure the relative
contribution of factors to the variation in the response
variables in order to behaviorally characterize four
System Dynamics software process models.

A conventional and very useful form of DOE is the 2k
factorial design, where each of k factors is allowed to
take on two values, a low or minus value and a high
or plus value. This design has been shown to be not
only economical but also effective at revealing
interaction effects [13, pg. 660]. Each combination
of factors is called a design point. The entire design
is often summarized as a design matrix, with the
design points arranged sequentially in the first
column, the value of factor k (- or +) indicated in
column 1+k. The response is shown in the final
column. In the case of simulation runs, there are
often multiple replications run at each design point in
order to compute the response, which might be the
mean value for, say, project duration, over N
replications at a particular level of each factor.

Since the number of replications per response is
frequently 10 to 30, and the number of design points
varies geometrically with k, the number of runs when
using DOE with simulation models can be quite
large. Thus, one tends to keep the number of factors
in the design small. A 2x2 design is quite typical and
can be quite revealing.

The primary results from DOE include the amount of
variance explained by all of the factors, the overall
contribution each factor, and the degree of interaction
between the factors. The latter is of particular
interest, because it implies that certain combinations
of factor values may be particularly effective or
ineffective in terms of the resulting response.

3.2 Combining Broad Range Sensitivity
Analysis (BRSA) with DOE
Traditional sensitivity analysis typically targets small
incremental changes around the expected value of the

model parameter. In BRSA, parameter values are
varied over their entire plausible range in order to
uncover non-linearities and specific parameter values
that significantly impact the results. Interestingly, this
is often not done because of the number of runs
involved and the challenge of organizing the runs and
analyzing the results. For our work, we leveraged the
linkage between Excel and Extend in order to facilitate
this process. One important result of BRSA is the
determination of whether the response varies linearly or
at monotonically with a particular parameter or if there
is in fact a highly non-linear effect where the response
shifts from varying directly with the parameter to
varying inversely with the parameter.

BRSA complements DOE. While DOE can reveal
interaction effects, it does not show non-linear effects.
Sensitivity analysis on the other hand, while it does not
show interactions, can reveal non-linearities. The
combination improves significantly upon ad hoc
sensitivity analysis. Moreover, the added cost in
simulation runs is not as great as might be experienced
using ad hoc sensitivity analysis because of the
systematic approach that is used to design the
simulation experiments and the efficient manner in
which the output information is used.

As models become more complex, it becomes
increasingly difficult to understand the subtle
interactions and nonlinearities embedded in the logic of
the model. Software Process Simulation models are
generally complex forms of SD, DES, and Hybrid
models (in particular). The BRSA approach provides
valuable insights for these types of complex models.

The BRSA approach is particularly helpful in data poor
environments such as software development, since it
can help to identify the most influential parameters and
the most influential ranges of those parameters (often in
subtle or non-obvious ways) that might merit additional
data collection efforts.

In a fashion similar to that suggested by Cheng and
Lamb [4] who used VBA to link Excel and SIMUL8,
we have linked the Extend simulation engine to both
Excel and to a statistical analysis package (Minitab).
This allowed us to design a set of experiments, and then
analyze the results to uncover statistically valid
interactions. We were also able to use this linkage to
efficiently conduct the BRSA to reveal non-linear
effects in the model.

Since the hybrid model presented in this paper was
created using Extend, which allows the user to make
significant modifications to the simulation engine, we
were able to create simulation blocks that performed

 5

multiple runs using input data stored in Excel
workbooks. Minitab was used to design factorial
experiments and transfer the input data for each
factor to Excel. The simulations were run in Extend,
with the output data being captured in Excel. The
output data was then moved back to Minitab for
analysis. Excel was similarly used to organize and
conduct the runs needed for the sensitivity analysis.

The remainder of the paper presents a case study of
the application of DOE and BRSA using the Hybrid
software development process model described in
section 2.2. The DOE illustration is the simplest
possible, a 2x2 design, and yet still shows non-
obvious results. The BSRA illustration uses the same
underlying model, and considers five parameters.
Again, the results are not obvious, and greatly helped
to further the modelers’ understanding of the
subtleties of the model logic and the process being
modeled.

4. CASE STUDY: APPLICATION OF
DOE AND BRSA TO STUDY THE
IMPACT OF REMOVING
INSPECTION STEPS ON PROJECT
DURATION AND ESCAPED ERRORS

One important decision that software project
managers need to make is whether or not to have
inspections. While inspections can be very costly,
the results of the inspections have a significant
impact on product quality, development costs, and
the time required to complete the remaining
development and testing steps. Research has shown
that inspections can be highly effective at removing
defects and can have significantly beneficial impacts
to project cost and schedule [3, 7, 11]. The key
question for a project manager is: What will be the
impact of adding inspection steps to my specific
development process, given my staffing situation,
and my particular development environment? For
many project environments, worker motivation,
schedule pressure, and workforce experience all have
significant impacts on the effectiveness of
inspections at any given point in the project.
Moreover, these environmental factors combine and
interact in complex ways and the results are not
always intuitive.

It is important to understand how inspections impact
overall project results, but the effects when these
important project environmental factors are
considered can be subtle and counterintuitive. We

will use a Hybrid simulation model that captures both
project environment effects as well as details regarding
the software development process to explore this
situation. We then use DOE and BRSA to gain insight
into the interaction effects and nonlinearities.

4.1 Overview of the Software Development
Process Model

The process used in this model was a modified version
of the ISPW-6 software process example developed by
Kellner et al [12] . This process was designed to
capture eighteen realistic process issues. This process
example has been used as a benchmark by numerous
researchers and practitioners to test their software
process modeling tools. The original ISPW-6 process
model was modified by Raffo and Kellner [21] as part
of a state-based simulation modeling effort, to include a
Fagan code inspection [7] and to utilize a data set that
was developed by interviewing several software
engineering professionals. The software development
process included in the Hybrid simulation model
described in this paper uses this process modification
and further changes the moderator inspection process
step into a full code re-inspection.

The contemplated process change is the removal of the
re-inspection step. One might anticipate that if the re-
inspections are effective, then removing them might
actually increase overall project duration because more
errors would escape to the testing phases and would
therefore be detected and corrected later in the process
when it takes more effort to correct them. On the other
hand, since re-inspection will detect fewer errors than a
first-time inspection, perhaps removing them will
shorten the project duration. The actual result will
depend on the specifics of the project environment, and
will be manifested in the simulation and subsequent
analysis as an interaction effect.

In the modified ISPW-6 process, a full code inspection
is done, the errors are fixed and then, if needed, a re-
inspection is done. Many of the errors that escape both
inspections are detected in Unit Test and reworked in
the Unit Test Rework step. Removing the re-inspection
step is likely to cause more errors to reach unit test,
extending the duration of that step. On the other hand,
not performing the re-inspection will save time and
resources. The duration of the re-work step that follows
Unit Test, and the number of errors corrected in Unit
Test rework should both increase when code re-
inspections are eliminated. Moreover, we would expect
that a portion of these escaped defects from the code re-
inspection would find their way into the later phases of
Integration, Function and System test. Since these

 6

processes are beyond the scope of the ISPW-6 model,
we treat Unit Test as a general testing step (with
correspondingly higher costs than might be typical).

We will examine each factor at two levels, a 2X2
factorial design, with 10 replications per response, for a
total of 40 runs (test runs had indicated that 10
replication per response were sufficient). We will
examine the effects on two output measures, project
duration and the number of errors detected in unit test.
The assumption is that highly-effective re-inspections
remove enough additional errors that if they are
skipped, the increased errors detected and corrected in
unit test will cause the overall duration of the project to
increase. We also want to know if the errors detected in
unit test increase when the inspection step is skipped,
and if the resulting increase in unit test time is sufficient
to nullify the time saved by skipping the re-inspection
step.

The factors of interest are whether or not re-
inspections are performed (perform or skip) and
inspection effectiveness (measured by the percentage
of project effort allocated to inspection activity: 5%
is low and 15% is high). Table I summarizes the
practical aspects of the experiment.

 Skip Re-

inspections
Perform Re-
inspections

Effectiveness
of Inspections
[and re-
inspections]
is High
(=15%)

Conventional
wisdom says this
would probably
makes the most
sense—do it
right and do it
once.

Quality zealots
would probably
advocate this
scenario—in
order to
minimize
escaped errors.

Effectiveness
of Inspections
[and re-
inspections]
is Low (=5%)

Time to market
zealots might
advocate this
scenario—do it
quickly and
forget it.

It is not likely
that anyone
would advocate
doing
ineffective
inspections
twice.

4.2 DOE Results

Figure 1 shows the results of an analysis of variance
(ANOVA) on the results of the 40 simulation runs. In
half of the runs, the re-inspection was performed, and
the mean project duration for these runs was 610 days.
For the other half of the runs, re-inspection was
skipped, and the mean project duration for these runs
was 565 days.

Half of the 40 runs (a different half) had low inspection
effectiveness. The right hand graph in Figure 1 shows
that the mean project duration for these cases was just
over 590. The mean project duration for other half of
the runs, those with high inspection effectiveness, was
just over 580 days.

Table I: Practical Interpretation of the Experiment

Mean
Project
Duration
(days)

Figure 1 -- Main effects of Re-inspection and Inspection Effectiveness on Project Duration

 7

The interpretation of Figure 1 is that skipping re-
inspection has a significant beneficial impact on the
project duration, whereas the impact of low vs. high
inspection effectiveness is in the expected direction
but not significant. The interaction effect between
inspection effort and skipping the re-inspection step
(not shown) was also not significant.

This result is contrary to what one might expect--that
skipping the re-inspection would increase project

duration when the inspection effectiveness is high,
and would decrease project duration only when the
inspection effectiveness inspections is low.

To further examine the simulation results, we
consider the number of errors detected (which is a
quality measure that can be directly observed) in unit
test in each of the four cases. Figure 2 plots the main
effects of Re-inspection and Inspection Effectiveness
on Errors detected in Unit Test.

Figure 2 -- Main Effects of Re-inspection and Inspection Effectivness on Unit Test Errors

Here again we see that only the Re-inspection had a
significant effect. Once again, the results differ from
what one might expect--that removing the Re-
inspection would cause more errors to reach Unit
Test, and therefore cause more errors to be detected
in Unit Test, as is frequently discussed in the
literature. For example, Jones [11], Fagan [7] and
Boehm [3] describe the increased cost of fixing errors
late in the project.

However, the DOE factorial experiment shows the
assumption not to be true in this case. Such a
behavioral anomaly forces the modeler to either
correct the model if the anomaly is due to flaws in the
model, or leads to a deeper understanding of the
referent system.

In order to reconcile this anomaly, we must examine
the assumptions of the case. Specifically, we need to
examine the assumptions about the error generation
rates for the project. Using design error generation
rates of 25 errors per KLOC and code error
generation rates of 12.5 errors per KLOC over 800
errors escape into the finished code. If Unit Test is

only capable of detecting between 100 to 200 errors1,
as indicated by Figure 2, the Unit Test step will be
able to detect approximately the same number of
errors regardless of inspection efficiency or the
presence or absence of a moderator inspection.

Thus, it is possible that the anticipated result will
only occur when the error generation rate is small
enough that the number of potentially detectable
errors that reach Unit Test is less than the detection
capacity of Unit Test. We test this by repeating the
previous experiment with a reduced error rate (6
errors/KDSI for design and 3 errors/KDSI for code).

1 In Hybrid Models, defects are detected at a certain
rate. As a result, the number of defects detected
largely depends upon the amount of effort (staff
hours) allocated to that activity, although the rate
depends upon a variety of factors. In this model,
given the time allocated to Unit Test, 100-200 defects
is the limit of the Unit Test Phase’s capacity to detect
defects.

 8

The results of the ANOVA for the reduced error rate
case indicates that the interaction effect between Re-

inspection and Inspection Effectiveness is now
significant, as shown in Figure 3.

Figure 3 -- Interaction between Inspection Efficiency and Re-Inspection on Project Duration with Low Error Rates

The interpretation of Figure 3 is that with low error
injection rates, when inspection effectiveness is 5,
performing Re-inspections yields an average project
duration of just over 600 days. The duration is
significantly lower, 550 days, when Re-inspections
are skipped. However, when inspection effectiveness
is 15, project duration drops to 500 days when Re-
inspection is performed; and now, when the re-
inspection is skipped, the duration increases
significantly to 550 days.

This result is significant and suggests that Re-
inspections are advantageous when project error
injection rates are relatively low.

However, as indicated in the first set of experiments,
when the error injection rates are high, skipping Re-
inspections will not increase project duration (see
Figure 1) because it will not appreciably change the
number of errors discovered and corrected in Unit
Test. It does, however, allow more errors to escape
(although not shown on the figures).

4.3 Broad Range Sensitivity Analysis
Results

The DOE analysis indicates that project duration is
likely to increase when Re-inspections are eliminated
in a low error injection environment. Naturally, this
result depends on several parameters that were held
constant during the experiment. We will illustrate the

use of BRSA by investigating how much these
parameters can change without changing this
conclusion.
We note that increases in project duration appear to
be caused by the additional time needed to rework an
increased number of errors in Unit Test. By studying
the logic of the model, we determine that rework time
depends on the number of errors detected and the
time to rework each error. The time to rework each
error depends on the error rework rate (a user
specified function) and the relative difficulty value
specified for unit test. The number of errors detected
depends on the effort (referred to as inspection
effectiveness in the DOE analysis), the error
generation rate, the error detection rate, and the
error density multiplier.

Because of their potential significance to the results,
the five model parameters shown in italics above
were selected to illustrate BRSA. Each parameter
was varied over a broad range of plausible values
taken from the literature. The details for each
parameter are discussed below. Ten replications
were run for each of these values, with everything
else held constant, for a total of 50 model runs.

Figure 4 shows the mean of the 10 runs for project
duration, as a function of the parameters as they were
varied over a broad, but plausible range. We discuss
each parameter and the interaction between parameter
following the figure.

 9

Figure 4 -- Sensitivity of Project Duration to Different Parameters

Effect of inspection effectiveness (Effort)
Inspection effectiveness (effort) is modeled as the
fraction of project resources allocated to inspection.
At low values of inspection effectiveness (effort),
small increases lead to increases in the overall
duration because more errors are identified and
corrected early in the project without reducing the
number of errors detected and corrected later in the
project.

For example, imagine a project that injects 1000
errors in design, and then detects 500 errors in
inspections and 200 errors in Unit Test. If inspection
effectiveness (effort) is increased and the project
detects 700 errors in inspections, it would still detect
200 errors during Unit test. The time to detect and
correct the additional 200 errors found during
inspection would simply increase project duration
(and reduce the escaped errors).

However, as we can see from Figure 4, as inspection
effectiveness (effort) increases, eventually the
number of errors available for detection will drop
below the detection and correction capability of Unit
Test. At the higher inspection effectiveness (effort)
values, correcting the errors in inspection leads to
decreases the project duration (in addition to reducing
escaped errors) because errors are detected earlier
when the number of hours required to correct the
errors is less.

Effect of unit test rework relative difficulty (REdiff)
Boehm claims that it is more difficult to fix an error
when it is detected late in the development process.
The increase in relative difficulty increases with the
size of the project. In small projects, the relative
difficulty may increase by a factor of 4 from design

to unit test. In large projects, it may be more than 20
times as difficult [2]. Fagan [7, pg. 270] used a
multiplier of 10 to 100 times for the relative
difficulty. Figure 4 shows the effect of this relative
difficulty on project duration. Relative difficulty
relates the unit test rework effort to the effort
required to fix the same error in design. A value of
20 on the X-axis means that it would take 20 times
the effort to rework an error in unit test. Relative
difficulty is graphed in Figure 4 as REdiff vs.
duration. The results are highly sensitive to this
parameter, as would be expected, and in a nearly
linear fashion. This is not surprising, and means that
REdiff can safely be assumed not to confound the
decision regarding Re-inspections because regardless
of the value used for Rediff the direction of the
impact will be same; only the magnitude will change.

Effect of error generation rate (NERPK)
The error generation rate directly affects the number
of errors available for detection. Abdel-Hamid and
Madnick [1] described the error generation function
as an S-shaped curve that began at 25 errors per
KDSI and ended at 12.5 errors per KDSI (a ratio of 2
to 1). Several authors have discussed the ratio
between design and coding errors. Table 1
(originally compiled by Abdel-Hamid and
Madnick[1]) shows the ratios and the sources.

Table 2-- Design vs. Coding Errors

Ratio of Design Errors
 to Coding Errors

Reference

3.8 to 1 Martin, 1983
2.0 to 1 Alberts, 1976
1.8 to 1 Jones, 1981
1.7 to 1 Boehm, 1981
1.6 to 1 Thayer et al, 1978

 10

Using these ratios and an ending (lower) value of
12.5 errors per KDSI, we generated a family of S-
shaped curves that creates the range of different error
profiles suggested by Table 2. These curves were
entered into the model as five different values for the
Nominal Errors per thousand lines of code function
(NERPK). As shown in Figure 4, duration increases
as the error generation rate increases. The increase in
duration is roughly proportional to the increase in
error generation rate, but the effect is relatively
modest overall. This is not surprising, and indicates
that NERPK can also safely be assumed not to
confound the decision regarding Re-inspections.

Effect of error detection rate (NQAMPE)
Error detection rates are also described as a function
that describes the QA manpower (in staff-days)
needed to detect an error. The function is an S-
shaped curve that assumes a higher value early in the
project, but drops later to reflect the assumption that
coding errors are easier to detect than design errors.

Using the reference originally cited by Abdel-Hamid
and Madnick [1], we assume a range of values from
.27 staff-hours per error to .4 staff-hours per error.
As the QA manpower needed to detect an error
increases, the number of detected errors drops. The
reduced number of detected errors reduces the
amount of rework and thus reduces the project
duration. This is plotted in Figure 4 as NQAMPE.
The effect is quite modest, and not surprising.
NQAMPE can also safely be assumed not to
confound the decision regarding Re-inspections.

Effect of error density multiplier (MDEFED)
Abdel-Hamid and Madnick modeled error detection
with an error density function that increased the
difficulty of error detection as errors were removed.
Specifically, MDEFED increases error detection
difficulty by as much as a factor of 50 times when
only one error remains. We preserve the shape of the
function, but vary the maximum multiplier from 9 to
50. When the multiplier maximum is smaller, the
difficulty of detecting an error is smaller, so that
enough errors are detected to allow duration to
increase slightly. However, when the multiplier is
large, the increased detection difficulty reduces the
number of errors detected, and thus reduces duration
(but at the cost of more escaped errors). This is
plotted in Figure 4 as MDEFED. Product duration is
very sensitive to this parameter, and the relationship
is highly non-linear, reinforcing the proposition that
increasing inspections cannot be counted on to
improve performance in all cases.

5. CONCLUSIONS

In order to fully analyze potential SW process
changes, one must embed SW development process
simulation models within an experimental
framework, and then use that framework to fully
understand the implications of these complex
simulation models. This requires that simulation,
data management, and statistical analysis tools be
effectively linked together in order in order facilitate
DOE analysis to reveal interaction effects and BRSA
to better understand non-linear aspects.

The example provided, the contemplated removal of
a re-inspection step in a complex SW development
process, shows a combination of both anticipated and
unanticipated results, which underscores the
importance of running a set of well designed
experiments and analyzing the results statistically.
Should one remove re-inspection steps to save time?
It depends, or course, on several factors.

When the error injection rate is reasonably low, DOE
reveals an interaction effect between inspection
effectiveness and whether or not re-inspections are
done (Figure 3). Skipping re-inspections when
inspection effectiveness is high is likely to increase
overall project duration due to the additional time
required to correct the errors when they are detected
later in the process. But, if the inspection
effectiveness is low, the capacity in Unit Test to
detect and correct errors is overwhelmed regardless
of the inspections, and therefore skipping re-
inspections reduces overall project duration.

However, if the error injection rate is high, the
interaction effect is no longer significant, in which
case skipping re-inspections would reduce project
duration regardless of whether or not the inspection
effectiveness is high or low.

BRSA further indicates that the results are highly
sensitive in a non-linear fashion to the relative
difficulty to correct errors, and to the inspection
effectiveness. The results are also highly sensitive in
a linear fashion to the error density multiplier. This
suggest that additional attention should be focused on
these particular relationships, and that the decision
whether to skip or perform re-inspections, for
example, depends very much on specific details of
the software development environment.

 11

6. ACKNOWLEDGEMENTS
This work has benefited from modeling support and
participation from Siri-on Setamanit. Her
contributions are gratefully acknowledged. In
addition, the authors are grateful to the Software
Engineering Research Center, a National Science
Foundation Industry/ University Collaborative
Research Center and Northrop Grumman Corporation
for supporting this research effort.

7. REFERENCES

[1] Abdel-Hamid, T. and Madnick, S., Software Project
Dynamics: An Integrated Approach, Prentice-Hall software
Series, 1991, ISBN 0-13-822040-9

[2] Boehm, B., Software Engineering Economics, Prentice-
Hall, 1981, ISBN 0-13-822122-7.

[3] Boehm, B., Clark, B., Horowitz, E., Madachy, R.,
Shelby, R., Westland, C., “Cost Models for Future
Software Life Cycle processes: COCOMO 2.0” Annals of
Software Engineering, (1995).

[4] Chen and Lamb, “Interactive Implementation of
Optimal Simulation Experiment Designs”, Proceedings of
the 1998 Winter Simulation Conference, 1998, pp 707-712.

[5] Donzelli and Iazeolla, “Hybrid Simulation Modelling
of the Software Process”, Journal of Systems and Software,
Volume 59, Number 3, December 2001.

[6] Extend, developed by Imagine That, Inc.,
http://www.imaginethatinc.com.

[7] Fagan, M. E., "Design and Code Inspections to Reduce
Errors in Program Development", IBM Systems Journal,
vol. 15, no. 3, 1976

[8] Hood and Welch, “Experimental Design Issues in
Simulation with Examples from Semiconductor
Manufacturing”, Proceedings of the 1992 Winter
Simulation Conference, 1992, pp 255-263.

[9] Host, Regnell, Dag, Nedstam and Nyberg, “Exploring
Bottle Necks in Market Driven Requirements Management
Processes with Discrete Event Simulation”, Journal of
Systems and Software, Volume 59, Number 3, December
2001

[10] Houston, et al, “Behavioral characterization: finding
and using the influential factors in software process
simulation models”, Journal of Systems and Software, V
59, 2001, pp 259-270.

[11] Jones, C., Applied Software Measurement, 2nd Edition,
Mc Graw-Hill, 1996.

[12] Kellner et al., “ISPW-6 Software Process Example”,
Proceedings of the First International Conference on

Software Process, Held at Redondo Beach, California,
October, 22-22, 1991, IEEE Computer Society, 1991, pp
176-186.

[13] Law and Kelton, Simulation Modeling and Analysis,
3rd Ed., McGraw-Hill, 2000.

[14] Lehman and Ramil, “The Impact of Feedback in the
Global Software Process”, Journal of Systems and
Software, V 46, No. 2/3, April 15, 1999.

[15] Madachy, R.J., " A Software Project Dynamics Model
for Process Cost, Schedule, and Risk Assessment", Ph.D.
Dissertation, Dept. of Industrial and Systems Engineering,
University of Southern California, December 1994.

[16] Madachy, R., “System Dynamics Modeling of an
Inspection-Based Process”, Proceedings of the Eighteenth
International Conference on Software Engineering, IEEE
Computer Society Press: Berlin, Germany, March 1996, pp.
376-386.

[17] Martin, R.H., “A Hybrid Model of the Software
Development Process”, Ph.D. Dissertation, Dept of
Engineering Management, Portland State University,
March 2002.

[18] Martin, R.H. and D.M. Raffo, “Application of a
Hybrid Process Simulation Model to a Software
Development Project”, Journal of Systems and Software,
Vol. 59, 2001, pp. 237-246.

[19] Porcaro, D., “Simulation Modeling and DOE”, IIE
Solutions, September 1996, pp 24-30.

[20] Powell, Mander and Brown, “Strategies for Life Cycle
Concurrency and Iteration”, Journal of Systems and
Software, V 46, No. 2/3, April 15, 1999.

[21] Raffo, D. and Kellner, M., “Predicting the Impact of
Potential Process Changes: A Quantitative Approach to
Process Modeling,” Elements of Software Process
Assessment and Improvement, IEEE Computer Society
Press, 1999.

[22] Raffo, Vandeville, and Martin, “Software Process
Simulation to Achieve Higher CMM Levels,” Journal of
Systems and Software, Vol. 46, No. 2/3 (15 April 1999),
pages 163-172.

[23] Tvedt, J., “An Extensible Model for Evaluating the
Impact of Process Improvements on Software Development
Cycle Time”, Ph.D. Dissertation, Arizona State University,
Tempe, Arizona, 1996.

[24] Wernick and Lehman, “Software Process White Box
Modelling for FEAST/1”, Journal of Systems and Software,
V 46, No. 2/3, April 15, 1999.

 12

8. BIOGRAPHIES

Wayne Wakeland
Dr. Wakeland is an Associate Professor of Systems
Science at Portland State University, where he
teaches system dynamics, discrete system modeling,
manufacturing simulation, business process modeling
& simulation, agent based simulation, and
organizational theory and dynamics. His research
interests include software process simulation,
biomedical simulation, sustainability, supply chain
logistics, and optimization in conjunction with
simulation. Dr. Wakeland has also held IT and
manufacturing management positions at Leupold &
Stevens, Epson, Magni Systems, Photon Kinetics,
and Tekronix. He was also a research associate on an
NSF-funded project on technology assessment. Dr.
Wakeland received a B.S. in Engineering and Master
of Engineering from Harvey Mudd College, and a
Ph.D. in Systems Science from Portland State
University.

Bob Martin
Dr. Martin has been doing and managing software
development since 1967. He has worked for
Computer Sciences Corporation, E-Systems, and
Tektronix. His consulting company, "Software
Management Consulting" has provided decision
models to British Petroleum, Alyeska Pipeline,
Motorola, and Northrop-Grumman. Dr. Martin
received a B.S. in Mathematics from the University
of Central Florida, and a M.S. in Engineering
Management and Ph.D. in System Science/
Engineering Management from Portland State
University.

David Raffo
Dr. Raffo is an Associate Professor of Technology
Management and Information Systems at Portland
State University. His research interests include:
software process modeling and simulation, strategic
software engineering, and process improvement. He
has over twenty-five refereed publications in the field
of software engineering and has received research
grants from the National Science Foundation, the
Software Engineering Research Center (SERC),
NASA, IBM Corporation, Tektronix Corporation,
and Northrop-Grumman Corporation. Prior
professional experience includes programming as
well as managing software development projects. He
has also taught in Purdue University's Software
Engineering Retraining Program (SERT) through the
Department of Computer Science. Dr. Raffo
received his Ph.D. at Carnegie Mellon University.

 13

	1. INTRODUCTION
	2.1 Common Simulation Paradigms Used to Aid Software Process Management
	System Dynamics
	State Based Models

	4. CASE STUDY: APPLICATION OF DOE AND BRSA TO STUDY THE IMPACT OF REMOVING INSPECTION STEPS ON PROJECT DURATION AND ESCAPED ERRORS
	6.ACKNOWLEDGEMENTS
	
	
	7.REFERENCES

