
IT’S POSSIBLE TO understand 
the theory of simulation but 
not know how to practice it 
to solve a problem in the 

real world. Simulation practice requires 
training, experience and professional 
judgment. This is achieved through 
time, similar to apprenticeship, dur-
ing which the trainee is involved with 
numerous projects from problem defi-
nition to writing the final technical re-
port under the close supervision of an 
experienced simulation consultant or 
practitioner.

During the mentoring period the train-
ee observes operations at the site, asks 
numerous questions about the process 
and learns how the firm has modeled 
similar situations. No single approach or 
methodology works for every project. A 
successful simulation practitioner relies 
on experience to construct approaches to 
each project and challenge. 

Judgment is acquired through practice, 
observing what works, what doesn’t, and 
why. It is perhaps the least understood 
skill to successful simulation practice, but 
the most important. 

Successful simulation practitioners 
draw on experience and judgment in a 
variety of topics. For example, there is 
the determination of the real problem that 
needs to be solved, rather than the prob-
lem indicated by the symptoms. Another 
determination is when enough verification 
and validation has been conducted to ac-
cept the simulation model as a substitute 
for reality. Yet another determination is 
what data is needed for a study, and what 
can be ignored. These judgment calls are 
numerous and continue throughout the 
problem-solving process.

In the following, we present what we 
consider to be the “ABCs of Simulation 
Practice.” Letter by letter, we summarize 
26 of what we consider to be important 
components for applying knowledge 
and judgment to simulation problems. 
We don’t claim that these are “the” 26 
components. Other simulation analysts 
could have another set, or they could 
have multiple components for one letter 
of the alphabet, and none for another 
letter of the alphabet. 

Our comments in this article are 
not necessarily what you will find in a 
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simulation textbook. What we are pre-
senting here relates more to the use of 
simulation in solving real-world problems. 
Both textbook understanding and practi-
cal knowledge are important to success 
in using simulation. If your desire is for 
“textbook” information, see Banks, et al. 
[2005] or Law [2007].

A is for arrivals. Arrivals are the driv-
er of discrete-event simulation models, a 
very appropriate beginning for this discus-
sion. Since arrivals are such an important 
input to a simulation, it’s crucial that they 
are correct. We introduce errors in mod-
eling when we fail to imitate reality in the 

input data. If the arrivals vary over time, 
we need to capture that phenomenon. 

B is for baseline. If we are going to re-
design a system, first we simulate the old 
system, i.e., the “as is” or baseline con-
figuration. When we are satisfied that the 
baseline configuration has been simulated 
properly, we revise it to simulate the rede-
signed “to be” system. A simulation of the 
baseline configuration will help us greatly to 
understand the way the system operates. 
In some cases, as the baseline system is 
simulated, there is sufficient added under-
standing of the existing system such that 
the system can be greatly improved without 

further modeling.

C is for confidence in-
terval. Confidence interval 
is a code word for conduct-
ing statistical output analy-
sis. (We assume here that 
you have random inputs, 
which leads to random out-
puts.) At the most basic lev-
el, we are trying to predict 
the performance of a single 
design or compare the per-
formance of two or more 
alternate designs. Next, we 
make a distinction between 
terminating simulations and 

steady-state simulations.  Steady state 
simulations are more difficult to analyze 
because there are initial conditions and 
the decision of an appropriate run length 
is needed. Consider a terminating simu-
lation that runs from time zero to some 
ending time. We conduct multiple repli-
cations of this model, each of them with 
a possibly different result since there is 
randomness in the input.  Using statisti-
cal methods or statistical software we find 
the desired confidence interval, usually 
95% or 99%.

D is for data. Data collection is one of 
the biggest tasks in solving a real prob-
lem. (In addition to inter-arrival time data 
there are service times, time to fail, time 
to repair, fraction of entities going in 
one of several directions, travel speeds 
and many others). It’s also one of the 
most important steps in the simulation 
process. Remember the term “GIGO.” 
It applies to simulation input data. That 
is, garbage-in, garbage-out. Even when 
the model structure is valid, if the input 
data has been collected inaccurately, or 
inappropriately analyzed the output can 
be misleading or simply wrong leading 
to decisions that are costly or worse.

E is for experimentation. We em-
phasize that the simulation analyst go 

to the extremes in experimentation. Ev-
ery queue should be examined to en-
sure that it is not growing without bound 
and that it is not always empty. If it is 
growing without bound the simulation is 
unstable. An empty queue could mean 
that the model structure is in error, or 
it could mean that the input data is in 
error. We also suggest constructing ex-
periments that will bring insight to the 
simulation analyst. The model must be 
stressed. That is, let the input values 
increase until the model becomes un-
stable to make sure that the structure of 
the model is appropriate. 

F is for fidelity. Fidelity is how close-
ly the model can mimic the behavior 
and operation of the real system (think 
of the fidelity of an audio system – how 
faithfully it can reproduce the original 
sounds recorded). The fidelity that is re-
quired of a model is a function of what 
questions we are trying to answer using 
the model, and is related to the level of 
detail in the model and the resolution 
(accuracy) of the input data. Increases 
in model fidelity come at a steep price in 
terms of the effort needed to build and 
test the model. The analyst needs to 
exercise judgment when deciding what 
fidelity is required and what resolution 
in the data is required.



G is for graphics. It is said that “a 
picture is worth 1,000 words.” But, we 
also say that “one good analysis is worth 
1,000 pictures.” We warn you not to be 
swayed by graphics that are fancier than 
need be for the situation. The purpose of 
graphics, in our opinion, is twofold. First, 
graphics helps the simulation analyst to 
see modeling errors. Second, graphics 
can be a selling tool for the system that is 
being proposed. Rather than making your 
decision based on the graphics provided, 
make it more on the power of the simula-
tion to solve the intended problem.

H is for histograms. Simple data 
graphics can be very helpful in understand-
ing the system that is being simulated. A 
histogram is a simple graphic. It has bins 
on the horizontal axis and frequencies or 
probabilities on the vertical axis. These can 
be drawn readily using Excel. In addition to 
histograms, simple graphics include scat-
ter plots, cause and effect diagrams, Pa-
reto charts, and bar-and-whisker diagrams. 
These are readily understood and we rec-
ommend them highly to explain the input 
data or output data. 

I is for initial conditions. Consider a 
single run of a simulation model whose 
purpose is to estimate the steady-
state behavior of the system. The sys-
tem starts idle and empty. It will take a 
while for the system to reach its steady 
state where the queues are filled ap-
proximately to their long-term average 
values. If we begin our statistical data 
collection at time zero, there will be ini-
tialization bias in the performance mea-
sure. There are several options here. 
The first option is to initialize the sys-
tem with what we believe would be a 
realistic number of entities being served 
and in queues. We would also have to 
place some machines in a failure mode. 
The second option is to divide the out-
put data into two parts: 1. the warm-up 
part beginning at time zero and end-
ing some time later, say t*; and 2. the 
steady state portion beginning at time t* 
and ending at the endpoint of the simu-
lation. This second method is used very 
often in the practice of simulation. 

J is for Java. Over the years, many 
simulation models have been written 
in a programming language. First it 
was FORTRAN, then C, then C++ and 
now Java. However, general program-
ming languages do not provide simula-
tion support functions including event 

scheduling, the sys-
tem clock and the time 
advance algorithm. 
Simulation products 
have also been writ-
ten in these program-
ming languages, which 
include these sup-
port functions. For the 
models written in Java, 
there is the advantage 
that a stand-alone sim-
ulation model can be 
delivered to the client for use on any 
Windows computer. 

K is for knowledge. You need to know 
the system that you are simulating. You 
need to ask a lot of questions. Remem-
ber, no two people will have the same 
perspective. Collect lots of information; 
for example, some CAD drawings can be 
used as the basis for the graphic anima-
tion of a system being simulated. Some 
of the resources on the CAD drawing can 
be directly converted to resources in the 
simulation model, saving lots of time, en-
hancing accuracy and making for a better 
animation. After gathering this knowl-
edge, prepare the assumptions that you 
will use in the simulation model, and have 
the client agree that the assumptions are 
accurate.

L is for linearity. We suggest that 
you look for linearity, but find the point 
where it disappears. An example is an 
automated guided vehicle (AGV) sys-
tem. Perhaps, two AGVs are better than 
one. But three AGVs might not be bet-
ter than two as the system gets clogged 
with AGVs waiting for an assignment. 
Similarly, faster conveyors can reach 
a point where merges become impos-
sible. So, understand that linearity often 
has limits.

M is for manufacturing and mate-
rial handling. A great amount of simu-
lation is devoted to these two areas, 
for good reason. As much as 80 per-
cent of the time between raw material 
and finished product states, goods are 
in transit or waiting for transit, i.e., in 
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the material handling system. This 
represents a very large investment of 
capital that could have been invested 
in some alternative income-produc-
ing asset. Many simulation projects 
are intended to solve problems in 
manufacturing and material handling 
systems.

N is for nature of the underlying 
process to be modeled. It is critical 
for the analyst to have sufficient un-
derstanding of a process in order to 
correctly model the data values it will 
take on in the simulation. For exam-
ple, if the Poisson process describes 
the arrivals, then the time between 
arrivals is exponentially distributed. 
On the other hand, when no data is 
available, understanding the under-
lying process allows for some initial 
guesses for input distributions. 

O is for object orientation. Most of 
the newer simulation software prod-
ucts are built using object-oriented 
programming systems or are them-
selves object-based systems, in 
which users can modify pre-defined 
standard objects to construct cus-
tom objects in a hierarchical model 
of their particular application. The 
software objects mimic the actions or 

behavior of their real-world counter-
parts (e.g., a machine), and interact 
with each other using “messages.” 
Object-based systems are a much 
more natural way to represent real-
world systems in a model, but require 
a different approach to the design and 
development than traditional proce-
dural based languages or simulation 
systems. Object-based simulation 
systems appear to be the direction for 
the future and will require the analyst 
to be familiar with this new approach 
to designing and building models.

P is for programming. Among the 
most important elements that con-
tribute to the validity and usefulness 
of a model is the level of detail and 
complexity included to represent the 
business decision rules, control al-
gorithms or other control logic for the 
specific system being analyzed. Hav-
ing the flexibility to get away from the 
often limiting built-in point-and-click 
and drag-and-drop rule set to write 
custom logic that closer approximates 
the real system logic is what gives 
power to model the real system. Pro-
gramming is the process of designing, 
building and testing custom logic – re-
gardless of the language or method of 
implementation.



Q is for queueing. The measurement 
of the number or time in queues (e.g., wait-
ing lines) is the major interest in discrete-
system simulation. In some simple cases 
we can approximate these measures. 
But, in most real cases, the mathemati-
cal models are not sufficiently descrip-
tive, and we must resort to simulation to 
approximate the queue measures. An ex-
ample is a queueing system in which the 
number of servers varies by the number 
of customers waiting in the queue and the 
resources break down randomly and also 
require preventive maintenance.

R is for run length. When we run a 
simulation, we select the time span for the 
analysis period – e.g., a 24-hour period for 
a manufacturing process, maybe a seven-
day period for a mail sorting facility or 360 
days for a supply chain network. It’s up to 
the analyst to set this time span to repre-
sent the “period of interest” that will support 
whatever analysis needs to be done. De-
ciding on this interval depends on a variety 
of factors including the following: (a) under-
standing the underlying nature of the sys-
tem such as natural repeating cycles, (b) 

analysis objectives and how those translate 
into the period of interest - e.g., the busiest 
day in the week for a mail facility), (c) what, 
if any, warm-up period is required and how 
to estimate this, (d) unscheduled events 
that may occur during this time span and 
which need to be accounted for, and (e) the 
number of observations that the model will 
collect from key events that may occur dur-
ing this time span.

S is for sensitivity testing. Sensitiv-
ity testing is a method for determining the 
relative importance and impact on key 
model output variables of input variables 
or distributions of processes for which we 
have limited or no data from which to con-
struct a distribution to represent the pro-
cess. This method involves making rough 
estimates of the range over which the 
variable may take on values, and some 
notion of the underlying process that will 
allow an initial selection of a distribution, 
even if only uniform or triangular. We 
then run several replications of a series 
of experiments, each using different val-
ues from within the estimated range for 
the input process in question. If exami-
nation of the key output variables shows 
little change in response to the range of 
input values for these processes, we may 
conclude that this particular model is not 
sensitive to this process, eliminating the 

need to obtain more accurate estimates 
of the input values or underlying distri-
bution. If, on the other hand, the output 
values show considerable swings, we 
conclude that the model is very sensitive 
to this process, and we must then devel-
op more representative input data.

T is for teamwork. A successful sim-
ulation project is the result of teamwork 
including planning, collaboration and 
communication between the various proj-
ect participants. Getting a project done on 
schedule doesn’t just happen. The project 
must be planned and executed properly. 
Good communication is required for the 
analyst to understand details of the sys-
tem to be simulated, and for the client to 
develop realistic expectations of the sim-
ulation process. Both parties collaborate 
on deciding what is included, what is not, 
at what level of detail and when the anal-
ysis is completed. The analyst must take 
the lead in establishing the requirements 
and methodology for this teamwork pro-
cess, and to actively guide or even drive 
it to completion.

U is for unscheduled events. Un-
scheduled events include breakdowns or 
other unplanned interruptions. In general 
these can be very complex and difficult to 
correctly model. The typical approach is 

to simply collect process data, and then 
generate these events in the model us-
ing an exponential distribution whose 
mean is based on the observed data. In 
practice, however, we find that this can 
have unintended consequences due to 
the potentially large values that can be 
generated by this distribution – often 
much longer than the period of interest 
to simulate. A more practical way to do 
this includes separating the unscheduled 
events into two classes. The first class 
includes events that typically occur one 
or more times within the timeframe of in-
terest to simulate (e.g., one week for a 
manufacturing process), such as convey-
or jams or robot faults. The second class 
includes rare events, such as major ma-
chine breakdowns, which occur much less 
frequently on average than the simulated 
timeframe. First, run the model with nei-
ther class of unscheduled events turned 
on, to understand the basic behavior or 
capacity, etc. of the system without inter-
ruptions. Second, turn on the first or “typi-
cal” unscheduled events and re-run the 
model to determine the impact of these 
events, which must be included as part of 
any analysis. Finally, instead of allowing a 
distribution to generate random times for 
the rare unscheduled events – which may 
not occur for a long time, perhaps skewing 
the analysis, we recommend forcing one 
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or more of these events in each model 
experiment (at a random time within the 
normal timeframe of interest), and then 
examining the impact on the system and 
how long is required to recover from the 
event. We find this technique more ex-
pedient, quicker and certainly easier to 
replicate.

V is for verification and validation. 
V/V are essential to successful simulation 
modeling. Verification asks the question, 
“Did we model it correctly?” Validation 
asks the question, “Do we have the cor-
rect model?” Verification techniques were 
borrowed from software engineering. 
Validation techniques that are used, how-
ever, are more unique to simulation. We 
don’t ever prove that a model is valid. “Is 
the output reasonable?” is the first ques-
tion that should be asked. Amazingly, 
a simulation analyst can get lost in the 
detail and never look at the output with 
this question in mind. V/V should be con-
ducted throughout the process, not just 
at the end. Resources, say 20% to 25% 
of the project budget, should be planned 
to conduct the appropriate amount of V/V 
that is requisite to releasing a model as a 
representation of the real system.

W is for WSC. The Winter Simula-
tion Conference (WSC) is held in early 

December every year. It is the premier 
conference for discrete-event simulation 
with some 700 to 900 attendees, depend-
ing on location and the economy. For 
anyone interested in discrete-event simu-
lation, there is always something available 
with as many as 18 concurrent sessions 
underway. These sessions range from in-
troductory to advanced and from practice 
to theory. There are also exhibits where 
the vendors present their wares. For more 
info, visit www.wintersim.org/.

X is for the X factor – the unknown. 
In every project, no matter how careful-
ly planned, there is always something 
that causes a problem that is a surprise. 
It can be minor, such as an overlooked 
step in the process being simulated, 
or major such as not being able to un-
derstand or explain why the model is 
producing completely counter-intuitive 
results. The experienced analyst is able 
to step back from the project – from the 
model details, from the project assump-
tions, from the confident way the client 
stated the key decision control logic – 
and look for the X Factor that would ac-
count for the surprise. There is both art 
and science to this ability – insight, fol-
lowed by a logical and methodical ap-
proach to testing, eliminating and finally 
identifying the underlying cause.

Y is for YANSL. YANSL (Yet anoth-
er network simulation language) is an 
acronym coined by Joines and Rob-
erts [1997], but we use it here to de-
scribe the proliferation of simulation 
software. For example, nearly 20 sim-
ulation software vendors, some with 
multiple packages for sale, were rep-
resented at WSC’08 (www.wintersim.
org/ExhGuide08.pdf). For the person 
new to simulation, this provides a very 
large choice set. 

Z is for Z-values … and other statis-
tical values as a reminder of the out-
put analysis capability that is available 
for simulation. These output analysis 
capabilities are built into many simula-
tion software packages. They perform 
a variety of functions including statisti-
cal analysis, optimization, support for 
experimentation and output data man-
agement. The problem is that many 
simulation analysts don’t use the ca-
pability that is available. Perhaps, they 
don’t understand what is happening, so 
they would be hard pressed to explain it 
to their manager. 

We consider the 26 items that we 
discussed to be important, but not 
necessarily unique. Although many of 

these items should be part of every 
simulation professionals’ experience 
base, others may have items that are 
unique to their practice. What is impor-
tant is to note that to be successful in 
the practice of simulation, a knowledge 
base built on practical experience and 
professional judgment, such as is rep-
resented by these 26 items, is critical 
in the real world. ❙
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